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Quaternionic Electron Theory: Geometry, Algebra,
and Dirac’s Spinors
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The use of complexified quaternions and i-complex geometry in formulating the
Dirac equation allows us to give interesting geometric interpretations hidden in
the conventional matrix-based approach.

1. INTRODUCTION

Among the many alternative mathematical systems in which the Dirac

equation can be written (Itzykson and Zuber, 1985; Hestenes, 1966; Adler,

1966; Baylis, 1997; Davies; 1990; Rotelli, 1989; De Leo, 1996), we showed

in a recent paper (De Leo and Rodrigues, n.d.) how the matrix and vector
algebras can be replaced by a single mathematical system, complexified

quaternionic algebra, with which geometric interpretations can be carried out

more efficiently. The power of our (complexified) quaternionic formalism

becomes evident within the electron theory, and it derives from the fact that

the elements of the complexified quaternionic algebra are subject to direct

geometrical identifications. The theory presented in our previous paper (De
Leo and Rodrigues, n.d.) is algebraically isomorphic to the matrix Dirac

theory; it can be provided with an equivalent physical interpretation as well.

It differs from the Dirac approach in that all its algebraic ingredients have a

geometrical significance determined by geometric properties of the complexi-

fied quaternionic algebra. In contrast to the complex matrix algebra of Dirac,

the complexified quaternionic algebra has a clear geometrical significance.
By introducing new imaginary units, we give a geometrical interpretation
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for the ª complexº imaginary unit i which characterizes standard quantum

theories.

By working with complexified quaternions and i-complex geometry (De
Leo and Rodrigues, 1997, n.d.), we also obtain the surprising conclusion that

the Schro
È
dinger theory contains additional information. It is possible to affirm

that spin and the positron are already present in the complexified quaternionic

Schro
È
dinger theory. At first sight such a conclusion may seem preposterous.

Schro
È
dinger knew nothing of spin and the positron when he framed his

equation. ª But it is no more preposterous than the incredible fact that Schro
È
d-

inger wrote down his equation and solved the first problems of modern

quantum theory without any mention of probability, though it now appears

that probability was already in the theory. The Born interpretation of c ² c
as a probability density can be adopted without the slightest modification of

Schro
È
dinger ’ s work. Indeed, the Born interpretation is now an indispensable

part of the theoryº (Hestenes and Gurtler, 1971).
Let us give an informal discussion concerning the additional solutions

in the complexified quaternionic Schro
È
dinger equation. By working with

complex numbers we have no possibility to accommodate the two degrees

of freedom characterizing the spin of the electron

c P C(1, i) [electron with ª frozenº spin] (1)

By allowing real quaternions as underlying numerical field we double the

complex degrees of freedom and consequently we have rotations in the plane

(C(1,i), jC(1,i))

In this case we can accommodate the spin up and down of the electron,

respectively, on the complex and pure quaternionic axis. Thus, (real) quaterni-

onic wavefunctions naturally describe spin in the Schro
È
dinger theory,

c P * [electron with spin up and down] (2)

Finally, by considering complexified quaternionic numbers we can introduce

the dual space i * and quadruple the complex degrees of freedom

(*, i *)

This means that the wavefunction C in *c possesses the needed degrees of

freedom to represent the spin and positron content

C P *c [electron/positron with spin up and down] (3)

Obviously, the previous discussion represents only a ª roughº approach.

In Section 3, by analyzing the complexified quaternionic Dirac spinors, we

shall give a clearer geometric interpretation. Positive- and negative-energy
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solutions are respectively characterized (in the rest frame) by real and pure

complexified quaternionic spinors. For the most general solutions, we will

be able to relate them to rotation angles in the complexified quaternionic
hyperplane

(*c, i *c)

Finally, the polar form of complexified quaternionic spinors, given in Section

2, will allow us to identify the spin operator by a new hypercomplex imaginary

unit (, specified by the components of the momentum operator p of our

particle.

2. GEOMETRIC ALGEBRA OF COMPLEXIFIED
QUATERNIONS

In this section we draw out the polar form of complexified quaternions,

which will be very useful in discussing geometric interpretations of Dirac

spinors.

Let us start with the standard discussion about plane geometry and

complex algebra. We may relate the geometry to the complex algebra by
representing complex numbers in a plane

x 1 iy 5 rei u (4)

In fact, we know that a rotation of the angle a around the z axis can be

represented by ei a ,

ei a (x 1 iy) 5 rei( a 1 u )

Feynman (1975) called equation (4) the unification of algebra and geometry.

We like talking of ª partialº unification. Our aim in this section is to show

how it is possible to generalize the connection between geometry and algebra

by using a noncommutative numerical field, or more generally hypercom-

plex numbers.

Similar to rotations in a plane, a rotation about an axis passing through
the origin and parallel to a given unitary vector uÃ[ (ux,uy, uz) by an angle

a can be obtained by taking the real quaternionic transformation

exp 1 iux 1 juj 1 kuz

2
a 2 (ix 1 jy 1 kz) exp 1 2 iux 1 juj 1 kuz

2
a 2 (5)

The vector part (q ² 5 2 q) of a generic quaternion

q 5 r0 1 h ? r

with the real axis q 5 r0 specifies a unique ª complexº plane with imaginary

axis given by the unit
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i
r1

r
1 j

r2

r
1 k

r3

r
, r 5 ! r 2

1 1 r 2
2 1 r 2

3

Our quaternionic number will be represented in this plane by

r0 1 Ir 5 r eI a (6)

where

I 5
h ? r

r
, h [ (i, j, k),

Let us analyze what happens for complexified quaternions. What is the

polar form of complexified quaternions? How can we specify a ª complexº

phase? It is possible to define a hyperplane?
A generic complexified quaternion is expressed by

qc 5 c0 1 ic1 1 jc2 1 kc3, c0,1,2,3 P #(1, i ) (7)

We define

c 5 ! c2
1 1 c2

2 1 c2
3

and consequently we have

qc 5 c0 1 (c (8)

where

( 5 i
c1

c
1 j

c2

c
1 k

c3

c
5

h ? c

c
, (2 5 2 1, (*( 5 1

The vector part (q*c 5 2 qc) of a generic complexified quaternion qc with the

i -complex axis qc 5 c0 specifies a unique hypercomplex plane with ª imagi-

naryº axis given by the unit (.

By taking the *-involution, we find

q*c qc 5 c2
0 1 c2 P #(1, i )

Thus, we can write

q*c qc 5 r 2e2 i a , r , a P 5

and consequently identify

c0 5 r e i a cos z, c 5 r e i a sin z, z P #(1, i )

Then, the polar form of a complexified quaternion reads

qc 5 r e i a e(z (9)
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where

r e i a 5 ! c2
0 1 c2

1 1 c2
2 1 c2

3

and

cos z 5
c0

! c2
0 1 c2

1 1 c2
2 1 c2

3

, sin z 5
! c2

1 1 c2
2 1 c2

3

! c2
0 1 c2

1 1 c2
2 1 c2

3

In conclusion we can characterize a complexified quaternionic number

by two ª imaginaryº units

i and (

respectively related to the following ª hypercomplexº planes:

L (E) [ ( r e(z cos a , r e(z sin a ), L (s) [ ( r e i a cos z, r e i a sin z)

The first plane will identify the mixing of positive- and negative-energy

solutions, whereas the second one will represent the spin plane.

The real quaternionic theory essentially distinguishes two types of
objects, scalars and vectors. Nevertheless, we know that vectors split into

two disjoint sets, polar and axial vectors (often called pseudovectors) and,

in three dimensions we have also scalars and pseudoscalars. These distinctions

are well illustrated by complexified quaternions (Ward, 1997). Following the

convention used by Hestenes (1967a, b, 1991; Hestenes and Gurtler, 1971),
the terms in complexified quaternions

a 0 1 i b 0 1 i( a 1 1 i b 1) 1 j( a 2 1 i b 2) 1 k( a 3

1 i b 3), a 0,1,2,3 , b 0,1,2,3 P 5

naturally separate into four groups

a ® scalars

i b ® pseudoscalars

i h ? b ® vectors

h ? a ® bivectors

In the complexified quaternionic electron theory we can define the dual of

a complexified quaternion qc to be i qc. The dual operation turns a scalar into
a pseudoscalar and a vector into a bivector (and vice versa). We showed (De

Leo and Rodrigues, n.d.) that parity operation in the Dirac theory is related

to the x-involution. Thus, in the present formalism obtaining the dual is simply

achieved by multiplying by i .
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3. QUATERNIONIC DIRAC SPINORS

The possibility to express the Dirac spinor as a simple complexified

quaternion instead of vector column (as in real quaternionic and complex
formulations) represents the main difference between the complexified quater-

nionic and real quaternionic or complex version of the Dirac equation.

According to Zeni (1994),

The representation of a Dirac spinor by a generic (invertible) element of the Pauli

algebra has given rise to new insights in Dirac’ s theory of the electron: the polar

form of Dirac±Hestenes spinor presents the Dirac spinor as the product of a

complex number by a Lorentz transformation , where the argument of the complex

number has been identified with the Yvone±Takabayashi angle and its module

with the charge density of the mixture of positrons and electrons. Nevertheless

the proof of the equivalence between the original Dirac equation and the Dirac±

Hestenes equation is usually made raising an explicit relation between the compo-

nents of Dirac spinor and the Dirac±Hestenes spinor, that require a lot of

calculations to be done.

Our complexified quaternionic approach to Dirac theory reproduces

quickly the standard results, avoids a lot of calculations, and gives the desired

geometrical interpretations which characterize the Dirac±Hestenes theory

(Hestenes, 1967a, b, 1991; Hestenes and Gurtler, 1971). The plane-wave

solutions of the complexified quaternionic Dirac equation

( - t 1 i h ? - ) C (x)i 5 m C x(x) (10)

are

! | E | 1 m

2
3 5

1 1
i h ? p

| E 1 m
, 1 (1 1

i h ? p

| E | 1 m) 2 j, E . 0

1 1 2
i h ? p

| E | 1 m 2 i , 1 1 2
i h ? p

| E | 1 m 2 i j, E , 0 6 3 e 2 ipx

The wavefunction does not have a direct physical significance, and a

crucial part of the Dirac theory is to relate C to observable quantities. The

polar decomposition of C

r exp( i a ) exp((z) (11)

greatly facilitates this task and, in addition, makes the geometric content of

the theory explicit. The quantities

r , a , (, z

have distinctive geometrical and physical interpretations which are indepen-

dent of any matrix representation. So, it is best to use them instead of the

a ’ s and b ’ s which appear in the standard Dirac equation.
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Ordinarily, Dirac spinors are said to be representations of the Lorentz

group because they transform in a certain way under Lorentz transformation.

In contrast, we say that C represents a Lorentz transformation, and the
spinor ª e(zº may be regarded as a representation of a Lorentz transformation.

Complexified quaternionic spinors C consist of Lorentz rotations, dilatation,

and duality transformation.

By looking at the Dirac plane wave solutions in the rest frame of the

particle (p 5 0), we immediately find the following structures for our spinors:

C E 5 1 m P * ® a 5 0

C E 5 2 m P i * ® a 5 p /2

Thus, the hyperplane (*, i *), gives the mixing of positive/negative-energy

solutions in the rest frame of the particle. This was anticipated in our introduc-
tion. The situations appears more complicated for the general case in which

the particle is in motion. In such a case the positive-energy solutions are not

identified by simple (real) quaternions and so it is not immediate to extract

a 5 0. Nevertheless, by using the ,-conjugation operation (h ® 2 h, i ®
i ) we find

C , C 5 r 2 exp(2 i a )

and consequently the equations

C ,
E . 0 C E . 0 5 1 1 2

i h ? p

| E | 1 m 2 1 1 1
i h ? p

| E | 1 m 2
5 2 j 1 1 2

i h ? p

| E | 1 m 2 1 1 1
i h ? p

| E | 1 m 2 j 5
2m

| E | 1 m

C ,
E . 0 C E , 0 5 i 2 1 1 1

i h ? p

| E | 1 m 2 1 1 2
i h ? p

| E | 1 m 2
5 2 i 2j 1 1 2

i h ? p

| E | 1 m 2 1 1 1
i h ? p

| E | 1 m 2 j 5 2
2m

| E | 1 m

imply that positive-energy solutions are characterized by the a -angle value

0, negative-energy solutions by the a -angle value p /2. This means that we

can think of a ª complexº hyperplane

(* a 5 0
c , i * a 5 0

c ) [ (* a 5 0
c , * a 5 p /2

c )

where the positive-energy solutions are mapped in the ª realº axis, whereas

the negative-energy solutions are obtained by rotations of p /2 angles.
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Let us now give the explicit polar form for our complexified quaternionic

Dirac spinors. Consider

! | E | 1 m

2
3 1 1 1

i h ? p

| E | 1 m 2
It is immediate to recognize

c0 5 ! | E | 1 m

2
, c 5 i

p

! 2( | E | 1 m)

thus

r e i a 5 ! | E | 1 m

2
2

p2

2( | E | 1 m)
5 ! m

and

cos z 5 ! | E | 1 m

2m
, sin z 5 i

| p |

! 2m ( | E | 1 m)

The ª generalizedº imaginary unit ( is identified by

( 5
h ? p

| p |

We have now all the needed ingredients to write down the polar form for

our complexified quaternionic Dirac spinor

! | E | 1 m

2
3 1 1 1

i h ? p

| E | 1 m 2 ® ! m e i ( b

where

cosh b 5 ! | E | 1 m

2m

We can recognize in the definition of the ª generalizedº imaginary unit ( the

helicity operator (De Leo and Rodrigues, n.d.). For p [ (px, 0, 0), it reduces
to the complex imaginary unit i characterizing standard quantum mechanics.

Thus, the i in the Dirac equation can be interpreted geometrically (bivector)

and its appearance is strictly related to the particle spin content. The polar
form for the remaining Dirac spinors is very simply

! m e i i b , E . 0, spin -
! m e i i b j, E . 0, spin ¯
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! m e i i b i , E , 0, spin -
! m e i i b i ,j E , 0, spin ¯

All the imaginary units present in the complexified quaternionic Dirac theory

have now a geometric interpretation

i (pseudoscalar) ® positive/negative energy flip

j (bivector) ® up/down spin flip

i (bivector) ® generator of rotations

4. FROM QUATERNIONS TO CLIFFORD ALGEBRA

In recent years, different formulations of the Dirac equation have been

done by using noncommutative hypercomplex numbers. The first attempt,

performed by using real quaternions (Rotelli, 1989), gave the possibility to

reduce the dimension of the g m matrices (4 ® 2). The doubling of solutions

due to the i-complex geometry allows us to obtain the standard results notwith-

standing the halved dimension of Dirac spinors. Nevertheless, we also find
a different representation for operators (2 3 2 matrices) and spinors (two-

dimensional column vectors). The possibility to perform a one-dimensional

complexified quaternionic version of the Dirac equation by using i -complex

geometry (De Leo, 1996) overcomes this problem, by putting on the same

level the operators and the spinors. Yet, it was not possible to give a clear

geometric interpretation because of the complicated structure of spinors and
CPT operations. The formulation of the Dirac equation by complexified

quaternion and i-complex geometry maintains the possibility to treat operators

and spin at the same level, and in addition it permits interesting geometric

interpretations.

The Dirac theory can be formulated by complex or noncommutative
numbers. The passage from

complex ® real quaternions ® complexified quaternions

is achieved by performing a set of translation rules (De Leo and Rodrigues,

1997). We can obtain the same result by working only with the general

properties of the Clifford algebra, in particular the concept of even subalgebra.
In doing this, we recall the main step performed in the agreeable and clear

paper of Zeni (1994).

In the standard matrix form the Dirac equation for a free particle is

usually presented as
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i g m - m c 5 m c (12)

where the g m matrices satisfy the relations

g m g m 1 g m g m 5 2g m n , m n 5 0, 1, 2, 3

where

g m n [ diag ( 1 , 2 , 2 , 2 )

is the Minkowski metric. The Dirac matrices can be represented by the
following 4 3 4 complex matrices (Bjorken and Drell, 1964):

g 0 5 1 1 0

0 2 1 2 , g 5 1 0 2 s
s 0 2

A left ideal in a matrix algebra is a linear subspace of the matrix space which

is invariant under left multiplication. The set of all matrices which have all

elements null except those in the first column is an example of an ideal. The

main point in the ideal approach is to put on the same level the operators

and the spinors, representing all of them by 4 3 4 complex matrices. This

can be done if we use the following matrix representation for the Dirac spinor:

C 5 1
c 1 0 0 0

c 2 0 0 0

c 3 0 0 0

c 4 0 0 0 2 instead of c 5 1
c 1

c 2

c 3

c 4 2
The formulations of the Dirac equation using c or C are completely equiva-

lent. The ideals of an algebra are generated by idempotents, i.e., elements of

the algebra whose squares are equal to themselves. For example, the following

matrix is the generator of the ideal to which C belongs:

U 5 1
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 2
It is clear that U2 5 U and also that for every A P C(4), AU is an element

of the ideal defined above (only the elements in the first column are nonnull),

so that every C can be replaced by the product AU. Thus, the Dirac equation

now reads

g m - m AUi 5 mAU (13)

The Clifford algebra Cl4,1 is generated by the vectors j x, x P [0, 4], of

Cl4,1 that satisfy the following relation:
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j x j y 1 j y j x 5 2gxy

where

gxy [ diag( 2 , 1 , 1 , 1 , 1 )

It is well known that the algebra Cl4,1 is isomorphic to C(4), so the Dirac

equation has a natural representation in the Clifford algebra Cl4,1 in the sense

that all elements present in the Dirac equation belong to Cl4,1. For example,

the Dirac matrices g m are the representatives in C(4) of products of vectors

j . We write the representative and the matrices with the same symbol since

this does not cause any confusion,

g m [ j m j 4, m 5 0, 1, 2, 3

and the imaginary unit of C(4) is the volume element of Cl4,1 given below:

i [ j 0 j 1 j 2 j 3 j 4

We can see from the standard representation of Dirac matrices that the

idempotent U can be written as follows:

U 5
1

4
(1 1 g 0)(1 2 i g 1 g 2)

It is easy to verify the following identities, which will be useful afterward:

g 0U 5 U g 0 5 U

iU 5 Ui 5 g 2 g 1U 5 U g 2 g 1

The last equation shows that the imaginary unit, when multiplied by the

idempotent, can be replaced by the product g 2 g 1. The Dirac equation can be

represented in the Clifford algebra Cl4,1 through the following expression:

g m - m AU g 2 g 1 5 mAU g 0

It is well known that the Clifford algebras are Z2 graded, i.e., we can divide

the linear space of the algebra into two subspaces of even and odd grades,
which are respectively composed of even and odd products of the generators.

The even and odd subspaces of Cl4,1 are spanned by the following sets:

Cl 14,1 5 {1, j x j y, i j x} and Cl 24,1 5 { j x, i j x j y, i}

Every element of the odd subspace Cl 24,1 can be written as the product of an

element of the even subalgebra by an element of the odd subspace. In particular

we have
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Cl 24,1 5 Cl 14,1i g 2 g 1

Now consider a generic element of the Dirac algebra, A P Cl4,1. According

to the previous equation

A 5 A+ 1 A 2 5 A+ 1 B+i g 2 g 1

where A+ and B+ belong to the even subalgebra Cl 14,1 , Cl1,3, while A 2

belongs to the odd subspace Cl 24,1. Taking the product of A by the idempotent

U, we get

AU 5 (A+ 1 B+)U 5 f U

The final step to reduce the Dirac equation to the space-time algebra (STA)

Cl1,3 is to take apart the idempotent, which is the only element that does not

belong to the even subalgebra of Cl4,1. We note that the idempotent U is the
product of two idempotents

u 5
1

2
(1 1 g 0) and v 5

1

2
(1 1 i g 1 g 2)

The Dirac equation is rewritten as follows:

( g m - m f g 2 g 1 2 m f g 0)U 5 0

where the term in parentheses is clearly an element of the STA, since g m and

f belong to Cl1,3. So the above equation looks like

Cl 14,1 U 5 Cl 14,1 uv 5 Cl 14,1 v

The idempotent v is irrelevant to the above equation

Dv 5 0 ® D 5 0 and Di g 1 g 2 5 0

and because i g 1 g 2 is an invertible element, we have simply D 5 0. In

conclusion, the Dirac equation can then be written using only elements of

the STA:

g m - m f g 2 g 1u 5 m f g 0U

Before going on we observe that the idempotent u is irrelevant in the

above equation. All mathematical and physical information is contained in

f 5 f (x) P Cl1,3, which will be shown to be a sum of inhomogeneous even

multivectors of Cl1,3 and which looks like a superfield (Rodrigues et al.,
1995). To reduce the Dirac equation to the Pauli algebra Cl3,0, we use the
fact that the Pauli algebra is the even subalgebra of STA. The first step is

analogous to the previous case

f 5 f + 1 f 2 5 f + 1 w + g 0

and consequently we have
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f u 5 ( f + 1 w +)u 5 h u

where u 5 1±2(1 1 g 0) is the idempotent present in the Dirac equation performed

by STA and h is an element of the Pauli algebra. Multiplying the Dirac

equation by g 0 on the left and using h instead of f , we find that the Dirac

equation becomes

( g 0 g m - m h g 2 g 1 2 m g 0 h g 0)u 5 0

The term in brackets belongs to the Pauli algebra, Cl3,0 , Cl 11,3, since h and

the products g 0 g m and g 2 g 1 belong to Cl3,0. For the final step we have only

to consider that

Du 5 0 ® D 5 0 and D g 0 5 0

and because g 0 is an invertible element, we have simply

( - 0 1 s ? - ) h i s 3 5 m h x

This equation contains only elements of the Pauli algebra. By recalling the

isomorphism between the Pauli algebra and complexified quaternions

s % i h

i s % h

we reobtain the complexified quaternionic version of the Dirac equation. We

only note that to have the desired geometric interpretations it is important

to adopt i-complex geometry in defining scalar products.

5. CONCLUSIONS

The main goal of this paper is to get geometric interpretations in the

formulation of Dirac theory by complexified quaternions and i-complex

geometry. The possibility to write down a one-dimensional version of the

Dirac equation simplifies the solution of this equation. In the complexified
quaternionic algebra we work in eight-dimensional space over the real num-

bers, while in the standard (complex) formulation we have to deal with a

32-dimensional space on the reals. Moreover, all the elements in complexified

quaternionic numbers have a geometric interpretation and this allows a clear

interpretation for the complexified quaternionic imaginary units i , i, and j,
which appear in the spinor structure. We also recall that the Dirac spinors
assume in the complexified quaternionic polar representation a very simple

form. For these reasons, we think that the complexified quaternionic algebra

(together i-complex geometry) represents the ª naturalº mathematical lan-

guage in which to write down the Dirac equation and discuss electron theory.
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